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Genetic diversity of group A rotavirus in swine in Canada

Virginie Lachapelle • Jagdip Singh Sohal •

Marie-Christine Lambert • Julie Brassard •

Philippe Fravalo • Ann Letellier • Yvan L’Homme

Received: 30 September 2013 / Accepted: 13 November 2013

� Her Majesty the Queen in Right of Canada 2014

Abstract Group A rotaviruses (RVA) in pigs have been

poorly investigated in Canada. In a continued effort to fill this

gap, ten finisher swine farms in Quebec, Canada, were

sampled over a nine-month period. The presence of RVA

was detected in healthy pigs on all farms investigated during

the entire sampling period. The genotypes detected included

G2, G5, G9 and G11; P[6], P[7], P[13], P[27] and P[34]; and

I5 and I14. The predominant types were G2, P[13] and I5,

which is different from previous global reports. Various

fomites were consistently contaminated by RVA, suggesting

that a resident viral flora remains in the farm environment

and may play a role in the infection of incoming pigs. The

results also suggest temporal or geographical specificities

regarding strain distribution on pig farms.
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Rotaviruses (RVs) are important etiological agents of

severe neonatal diarrhea in humans and animals including

cattle, swine, horses, dogs, cats, chickens and turkeys. The

World Health Organization estimates that 453,000 children

aged less than 5 years, most from developing countries,

died from RV infection in 2008, which accounts for 5 % of

global child death [54]. In Canada, RVs cause 10-40 % of

childhood gastroenteritis, resulting in considerable direct

medical costs, mainly from hospitalization, and societal

costs such as loss of work time from parents [22, 26].

Economic losses due to this diarrheal disease are also

recognized in livestock, such as swine, due to medical

treatment and decrease in performance [49]. RV infection

is known to cause a diarrheal disease in suckling and

weaned pigs that is usually resolved in 2-3 days if not

complicated by secondary microbial infections [57]. In

fact, group A rotaviruses are one of the most frequent viral

agents detected in diarrheic piglets from 1-8 weeks of age

[50]. Asymptomatic RV infections are also known to occur

in pigs of all ages [5, 27, 52].

RVs are non-enveloped viruses belonging to the genus

Rotavirus within the family Reoviridae. RVs have an

11-segmented double-stranded RNA genome, which

encodes six structural proteins (VP1 to VP4, VP6 and VP7)

and five or six non-structural proteins (NSP1-NSP6) [10].

RVs are genetically highly diverse, with eight known

serogroups (A-H) based on antigenic properties and

nucleotide sequence of the inner viral capsid protein 6

(VP6) [40]. Although rotaviruses of groups A, B and C

infect humans and animals, group A rotavirus (RVA) is

considered the most important RV group because of its

high prevalence and pathogenicity [10, 34, 37]. RVAs have

two outer capsid proteins, VP4 and VP7, both of which are

important for inducing neutralizing antibodies and protec-

tive immunity. A binary classification system for RVAs

was established based on the nucleotide sequences of VP4

and VP7 genes and is continuously updated by the
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Rotavirus Classification Working Group (RCWG). So far,

a total of 35 P types (VP4) and 27 G types (VP7) have been

described [39].

Although specific G and P genotypes are generally

restricted to specific animal species, implying host prefer-

ence, a number of genotypes have been detected in mul-

tiple species, including humans, which suggests

interspecies transmission [36]. For example, a number of

studies have suggested a porcine origin of G3, G4, G5, G9,

P[6] and P[7] segments detected in human, equine or

bovine clinical specimens [14, 20, 21, 34]. In addition, a

number of RVA segments detected in swine display

human-like or bovine-like genotypes, indicating that reas-

sortment events can occur between RVAs originating from

different animal species [13, 17, 31, 32, 47]. Complete

genome sequencing of RVAs also revealed a close evolu-

tionary relationship between human Wa-like and porcine

strains [35]. Overall, these findings suggest that swine

represent a significant gene pool for human RVAs and

those of other animal species and emphasize the need for

surveillance studies to better understand the ecology of

these viruses and their zoonotic potential. Since there is

limited information about RVA strains circulating in the

human and animal population in Canada, this study was

designed to provide additional data on swine RVA diver-

sity by investigating VP4, VP6 and VP7 genetic hetero-

geneity on ten finisher swine farms.

Stool samples and viral RNA extraction

A total of 10 finisher swine farms (farms A-J) located in the

province of Quebec, Canada, were part of a project

investigating transmission patterns and epidemiology of

enteric pathogens (bacteria and viruses) between the farms

and a slaughterhouse through various stakeholders, using

molecular fingerprints. Farms were situated within a 60-km

radius and housed an average of 1300 animals. From June

2011 to February 2012, 4-5 composite fecal samples

(approximately 20 g each) were collected twice: once

between the months of June and August and once between

the months of September and February. Each composite

sample originated from three different pens that were

randomly chosen within each farm to increase the range of

RVA strains, with the hope that some might be specific for

certain farms and act as tracers in the epidemiological

investigation. There were a total of 98 composite samples

in this study. Pens housed an average of 20 asymptomatic

finisher pigs (between 12 and 22 weeks of age). Environ-

mental samples were collected by wiping four different

surface types (landing stages, doors, fan blades and por-

table solid panels) ranging from 20 cm2 to 40 cm2 with a

sterile cloth. These were collected twice on each farm for a

total of 80 samples. All samples were transported to the

laboratory chilled on ice and stored at -80 �C until ana-

lysis. Twenty percent faecal homogenates were prepared in

Eagle’s minimum essential medium (MEM) (Invitrogen,

Mississauga, ON, Canada), filtered twice with 0.45-lm and

0.22-lm filters (Sarstedt, Nümbrecht, Germany), and fro-

zen at -70 �C. Environmental samples were homogenized

in 15 mL of phosphate-buffered saline medium (PBS)

(Invitrogen, Mississauga, ON, Canada), mixed with 0.1

gram of polyvinylpyrrolidone (Sigma-Aldrich, St-Louis,

MO, USA), and spiked with a 100-lL suspension of

murine norovirus (104 viral particles/mL) as an internal

control. Following double filtration with 0.45-lm and 0.22-

lm filters, samples were subjected to ultrafiltration by

centrifugation at 5,0009g on Amicon� columns (Fisher

Scientific, Ottawa, ON, Canada) until a final volume of 250

lL was obtained, and they were frozen at -70 �C if not

used immediately. RNA extraction was performed using a

QIAamp Viral RNA Mini Kit (feces) or RNeasy Mini Kit

(environmental samples) (QIAGEN, Mississauga, ON,

Canada) according to the manufacturers’ protocols.

RT-PCR amplification

Partial VP4 (VP8*) and full-length VP6 and VP7 segments

were amplified by reverse transcription PCR (RT-PCR)

using a QIAGEN One Step RT-PCR Kit (QIAGEN, Miss-

issauga, ON, Canada) with primers Con3-Con2 [12],

GEN_VP6F-GEN_VP6R [36] and Beg9-End9 [16],

respectively (see Table 1 for primer sequences). Viral RNA

was treated for 3 min at 97 �C in order to denature the dou-

ble-stranded rotavirus RNA segments and quickly chilled on

ice. RT-PCR was performed using 10 lM of each primer in a

25-lL final volume. Reverse transcription was carried out at

45 �C for 30 minutes, followed by denaturation for 15

minutes at 95 �C. DNA amplification was performed for 40

cycles consisting of 30 seconds at 94 �C, 45 seconds at

45 �C, and 120 seconds at 68 �C, followed by a final elon-

gation of 30 min at 68 �C. Amplification products were

analysed using a QIAxcel capillary electrophoresis device

(QIAGEN, Mississauga, ON, Canada). Samples that con-

tained DNA fragments of the expected molecular weight

(Table 1) were separated by electrophoresis in a 1 % agarose

gel containing SYBR Safe (Invitrogen, Mississauga, ON,

Canada) and visualized under UV light.

Sequencing and phylogenetic analysis

Amplicons of the expected molecular weight were extrac-

ted from the gel and purified using a QIAquick PCR

Purification Kit (QIAGEN, Mississauga, ON, Canada)
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according to the manufacturer’s instructions. Amplicons

were cloned using a pGEM-T vector system kit (Promega,

Madison, WI, USA). Between one and six clones for each

sample were sequenced using the Big Dye v3.1 chemistry

on a 3730xl instrument from Applied Biosystems (Foster

City, CA). VP4 and VP7 clones were sequenced in one

direction, while those of VP6 were sequenced in both

directions due to the sequence length, using the plasmid

M13F-20/M13R-17 primers (Table 1). Sequence align-

ments and editing were performed using ClustalW and

Geneious Pro version 5.5.6 created by Biomatters (http://

www.geneious.com/). Sequences were analyzed using the

Basic Local Alignment of Sequences Tool (BLAST; http://

www.ncbi.nlm.nih.gov/) with default values and the Ro-

taC2.0 automated genotyping tool for Group A rotaviruses

to confirm RVA identity of all sequences [29]. Phyloge-

netic trees and molecular analysis were conducted using

the software MEGA� version 5.0 using the neighbor-

joining algorithm and the maximum composite likelihood

model with all gaps ignored. Statistical support was

obtained by 1000 bootstrap replications [53]. The MEGA�
5.0 software was used to calculate genetic distances

between sequences using the p-distance algorithm.

Sequences from this study were deposited in the Gen-

Bank database under the following accession numbers:

B48-B (VP7: KF501099); E83-A (VP7: KF501100); C57

(VP7: KF501101); D68-A (VP7: KF501102); B48-A (VP7:

KF501103); D69 (VP7: KF501104); A11 (VP7:

KF501105); G98 (VP7: KF501106); E85-036 (VP7:

KF501107); C180-1 (VP7: KF501108); OB472 (VP7:

KF534786); F432-3 (VP6: KF501109); F431-1 (VP6:

KF501110); A260-4 (VP6: KF501111); D330-1 (VP6:

KF501112); B42-B (VP4: KF501113); OE658 (VP4:

KF501114); A4 (VP4: KF501115); E81-A (VP4:

KF501116); H117-C (VP4: KF501117); D65 (VP4:

KF501118); I157-A (VP4: KF501119); F93 (VP4:

KF501120); A11 (VP4: KF501121); H119-B (VP4:

KF501122); C182-A (VP4: KF501123); H117-A (VP4:

KF501124); G98-A (VP4: KF501125); B42 (VP4:

KF501126); H117 (VP4: KF501127).

A total of 48 out of 98 composite fecal samples (49 %)

were confirmed positive for RVA by sequencing at least

one of three investigated segments (VP4, VP6 or VP7).

Positive samples were found on all farms (10/10). On eight

farms, multiple G types and/or P types were identified

(between 2 and 4 different G or P types). Five farms had

two different I types (I5 and I14). RVAs were consistently

found throughout the three sampling seasons on all farms

(summer, fall and winter).

Sequence analysis of the VP7 segment

Based on a nucleotide cutoff value of 80 %, a total of 27 VP7

G genotypes have been established by the Rotavirus Clas-

sification Working Group (RCWG) [39]. Using the RotaC2.0

automated genotyping tool for Group A rotaviruses [29] and

Blastn, a total of 41 RVA strains from this study were suc-

cessfully G-typed as G2, G5, G9 and G11 (Fig. 1a). For each

genotype, a representative strain chosen among clusters

sharing C 95 % nucleotide (nt) identity was used in the

phylogenetic tree reconstruction for more clarity.

A total of 24 out of 41 strains (59 %) were determined to

be G2-type. Five are shown in Figure 1a, and these shared

a mean nucleotide sequence identity of 92 %. Strains D69,

E85-036 and A11 showed high nucleotide sequence iden-

tity (mean, 92 %) to porcine strain RVA/Pig-wt/CAN/CE-

M-06-0003/2005/G2P[27] detected in Canada [25],

whereas strains C180-1 and G98 clustered closely with

Canadian porcine strain RVA/Pig-wt/CAN/F8-4/2006/

G2P6[7] [30] (92 % mean nt identity). These five strains

had a mean nucleotide sequence identity of 82 % to ref-

erence strain RVA/Pig-wt/THA/CMP034/2000/G2P[27]

isolated from a piglet in Thailand [23].

A total of 8 out of 41 strains (20 %) belonging to

genotype G5 were detected in this study, and four were

used as representative strains in the alignments (Fig. 1a).

The four G5 representative strains were genetically heter-

ogeneous, sharing a mean nucleotide sequence identity of

88 %. Strain B48-B shared 94 % nucleotide sequence

Table 1 List of primers used in this study

Primer Gene Sequence (50-30) Reference Amplicon size

con3 VP4 TGGCTTCGCTCATTATAGACA (F) Gentsch et al. [12] 877 bp

con2 VP4 ATTTCGGACCATTTATAACC (R) Gentsch et al. [12]

GEN_VP6F VP6 GGC TTT WAA ACG AAG TCT TC (F) Matthijnssens et al. [35] 1356 bp

GEN_VP6R VP6 GGT CAC ATC CTC TCA CT (R) Matthijnssens et al. [35]

Beg9 VP7 GGCTTTAAAAGAGAGAATTTCCGTCTGG (F) Gouvea et al. [16] 1062 bp

End9 VP7 GGTCACATCATACAATTCTAATCTAAG (R) Gouvea et al. [16]

M13F-20 — GTAAAACGACGGCCAGT-30 (F) — —

M13R-17 — CAGGAAACAGCTATGAC-30 (R) —
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identity with porcine strain RVA/Pig-wt/CAN/CE-M-05-

0081/2005/G5P[27] from Canada and strain RVA/Horse-

tc/GBR/H-1/1975/G5P[7] detected in the stool of a young

foal in 1975 [14, 25]. Interestingly, strain D68-A was most

closely related to human strain RVA/Human-wt/JPN/

Ryukyu-1120/2011/G5P[6], which was detected in the

stool of a 4-year-old child and is suspected to be of porcine

origin (91 % nt identity) [24]. Strains C57 and E83-A were

most closely related to porcine strains RVA/Pig-wt/CAN/

CE-M-06-0005/2006/G5P[6] (88 % nt identity) and CE-M-

05-0081 (95 % nt identity), respectively [25]. The nucle-

otide sequence identity of the four G5 strains from this

study to the canonical porcine G5 strain OSU (RVA/Pig-tc/

USA/OSU/1977/G5P9[7]) ranged from 84-96 % [36].

G5

G11

G9

G2

 RVA/Cow-wt/KOR/KJ44/2006/G5P1

 RVA/Pig-tc/USA/OSU/1977/G5P9/7

 RVA/Pig-wt/KOR/I-1/2006/G5P7

 RVA/Pig-wt/VEN/A34/1994/G5PX

 RVA/Horse-tc/GBR/H-1/1975/G5P7

 RVA/Pig-wt/CAN/CE-M-05-0081/2005/G5P27

 RVA/Pig-wt/CAN/B48-B/2011/G5

 RVA/Pig-wt/CAN/E83-A/2011/G5

 RVA/Human-tc/BRA/IAL28/1992/G5P8

 RVA/Human-wt/JPN/Ryukyu-1120/2011/G5P6

 RVA/Pig-wt/CAN/D68-A/2011/G5

 RVA/Pig-wt/CAN/C57/2011/G5

 RVA/Pig-wt/CAN/CE-M-06-0005/2006/G5P6

 RVA/Human-wt/BGD/Dhaka6/2001/G11P25

 RVA/Pig-tc/MEX/YM/1983/G11P9/7

 RVA/Pig-tc/VEN/A253/1988/G11P9/7

 RVA/Pig-wt/CAN/CE-M-06-0007/2006/G11P13

 RVA/Pig-wt/CAN/B48-A/2011/G11

 RVA/Pig-wt/CAN/F6-4/2006/G11P13

 RVA/Human-wt/CHN/L720/2007/G9

 RVA/Pig-wt/CAN/F7-4/2006/G9P7/13

 RVA/Environmentpigfarm-wt/CAN/OB472/2012/G9

 RVA/Pig-wt/ESP/34461-4/2003/G2P23

 RVA/Pig-wt/IRL/61/07-ire/2007/G2P32

 RVA/Pig-wt/THA/CMP034/2000/G2P27

 RVA/Pig-wt/CAN/AB82/2006/G2P34

 RVA/Human-wt/CHN/TB-Chen/2004/G2P4

 RVA/Pig-wt/CAN/C180-1/2011/G2

 RVA/Pig-wt/CAN/F8-4/2006/G2P6/7

 RVA/Pig-wt/CAN/G98/2011/G2

 RVA/Pig-wt/CAN/A11/2011/G2

 RVA/Pig-wt/CAN/D69/2011/G2

 RVA/Pig-wt/CAN/CE-M-06-0003/2006/G2P27

 RVA/Pig-wt/CAN/E85-036/2011/G2

100

90

83

100

89

100

100

100

100

100

99

99

99

100 91

99

98
98

100

99

98

100

0.05

 RVA/Pig-wt/CAN/CE-M-05-0091/2005/G4P6

 RVA/Pig-wt/CAN/CE-M-06-0005/2006/G5P6

 RVA/Pig-wt/CAN/H117/2011/P6

 RVA/Pig-wt/CAN/CE-M-05-0053/2005/G5P6

 RVA/Pig-wt/CAN/B42/2011/P6

 RVA/Pig-wt/CAN/CE-M-06-0001/2006/G4P6

 RVA/Pig-wt/CAN/CE-M-05-0085/2005/G4P6

 RVA/Human-wt/BEL/BE2001/2009/G9P6

 RVA/Human-tc/GBR/ST3/1975/G4P6

 RVA/Human-wt/CHN/R479/2004/G4P6

 RVA/Human-wt/RUS/Nov11-N1485/2011/G4P6

 RVA/Pig-wt/CAN/CE-M-06-0022/2006/G4P6

 RVA/Pig-wt/CAN/CE-M-05-0067/2005/G9P6

 RVA/Pig-wt/CAN/F8-4/G2P6

 RVA/Pig-tc/USA/Gottfried/1983/G4P6

 RVA/Pig-wt/CAN/G98-A/2011/P34

 RVA/Pig-wt/CAN/AB82/2006/G2P34

 RVA/Pig-wt/CAN/H117-A/2011/P34

 RVA/Pig-wt/JPN/FGP51/2009/G4P34

 RVA/Pig-wt/CAN/CE-M-06-0003/2005/G2P27

 RVA/Pig-wt/CAN/H119-B/2011/P27

 RVA/Pig-wt/CAN/C182-A/P27

 RVA/Pig-wt/THA/CMP034/2000/G2P27

 RVA/Pig-wt/CAN/F93/2011/P27

 RVA/Pig-wt/CAN/I157-A/2011/P27

 RVA/Pig-wt/CAN/A11/2011/P27

 RVA/Pig-tc/USA/OSU/1977/G5P7

 RVA/Panda-wt/CHN/CH-1/2008/G1P7

 RVA/Cow-tc/KOR/KJ19-2/2004/G6P7

 RVA/Cow-tc/KOR/KJ9-1/2004/G6P7

 RVA/Pig-wt/CAN/B42-B/2011/P7

 RVA/Pig-wt/CAN/F8-4/2006/G2P7

 RVA/Pig-wt/CAN/F7-4/2006/G9P7

 RVA/Pig-wt/CAN/CE-M-06-0007/Canada/2006/G11P13

 RVA/Pig-wt/CAN/H117-C/2011/P13

 RVA/Pig-wt/CAN/F6-4/2006/G11P13

 RVA/Pig-wt/CAN/D65/2011/P13

 RVA/Pig-wt/CAN/CE-M-06-0010/Canada/2006/G4P13

 RVA/Pig-wt/CAN/A4/2011/P13

 RVA/Pig-wt/IND/HP140/2007/G6P13

 RVA/Pig-wt/CAN/E81-A/2011/P13

 RVA/Pig-wt/CAN/strain 27/2006/P13

 RVA/Pig-wt/CAN/F7-4/2006/G9P13

 RVA/Pig-wt/CAN/OE658-G19/2012/P13

100

100

99

99

99

83

100

9287

99

83

88

100

99

99

97

85

99

100

96

100

97

99

100

98

99

84

0,05

P[6]

P[34]

P[27]

P[7]

P[13]

I5

I14

 RVA/Pig-wt/CAN/AB82/2006/G2P34

 RVA/Pig-wt/CAN/F432-3/2012/I5

 RVA/Pig-wt/CAN/CE-M-05-0081/2005/G5P27

 RVA/Human-wt/BEL/BE2001/2009/G9P6

 RVA/Pig-wt/CAN/CE-M-06-0007/2006/G11P13

 RVA/Pig-wt/CAN/CE-M-06-0005/2006/G5P6

 RVA/Pig-wt/CAN/CE-M-05-0091/2005/G4P6

 RVA/Pig-wt/CAN/F7-4/2006/G9P7/13

 RVA/Pig-wt/CAN/CE-M-06-0022/2006/G4P6

 RVA/Pig-wt/CAN/F431-1/2012/I5

 RVA/Human-tc/THA/Mc345/1989/G9P19

 RVA/Human-tc/THA/Mc323/1989/G9P19

 RVA/Pig-wt/CAN/CE-M-06-0001/2005/G4P6

 RVA/Pig-wt/CAN/CE-M-05-0085/2005/G4P6

 RVA/Pig-wt/CAN/D69-A/2011/I5

 RVA/Environmentpigfarm-wt/CAN/D330-1/2012/I5

 RVA/Pig-wt/CAN/F8-4/2006/G2P6/7

 RVA/Pig-wt/CAN/CE-M-05-0067/2005/G9P6

 RVA/Pig-tc/MEX/YM/1983/G11P9/7

 RVA/Human-wt/IND/RMC321/1990/G9P19

 RVA/Pig-wt/THA/CMP034/2000/G2P27

 RVA/Human-tc/USA/Wa/1974/G1P1A/8

 RVA/Pig-wt/CAN/A260-4/2012/I14

 RVA/Pig-wt/CAN/CE-M-06-0003/2005/G2P27100

100

97

98

100

88

90

0.02

a

c

b

Fig. 1 Phylogenetic trees based on nucleotide sequence alignments

of the complete VP7 gene (a), a partial VP4 gene (b), and the

complete VP6 gene (c) of reference strains and strains from this study.

VP7, VP4 and VP6 genotypes are shown on the right side of each

tree. Strains identified in this study are indicated by a filled circle.

Bootstrap values above 80 % are shown at the branch nodes
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A total of 9 out of 41 (22 %) VP7 G11-type strains were

detected in four out of the ten swine farms in this study.

The nine strains shared over 95 % nucleotide sequence

identity, and therefore, a single strain (B48-A) was selected

as representative for this genotype. B48-A showed highest

genetic identity to strain RVA/Pig-wt/CAN/F6-4/2006/

G11P[13] from a Canadian pig (94 % nt identity) [30].

Nucleotide sequence identity to G11 porcine reference

strains RVA/Pig-tc/MEX/YM/1983/G11P9[7] and RVA/

Pig-tc/VEN/A253/1988/G11P9[7] was 86 % and 89 %,

respectively [36, 38].

Sequence analysis of the VP4 segment

Using the 80 % nucleotide cutoff value established to

distinguish 35 P genotypes [39], strains from this study

were classified into five different VP4 types by the Ro-

taC2.0 online tool and Blastn analyses. A total of 48 strains

from the present study were P-typed as P[6], P[7], P[13],

P[27] and P[34] (Fig. 1b). As was done for the G types

described above, representative strains were chosen within

groups of strains showing C 95 % nucleotide sequence

identity for better clarity of the dendrograms.

A total of 5 out of 48 (10 %) P[6]-type strains were

detected, and these formed two clusters, represented by

strains B42 and H117. These two strains shared 93 %

nucleotide sequence identity with each other and were

genetically closest to a group of swine strains from Canada

(94 % mean nt identity) (Fig. 1b) [25]. Interestingly, both

strains had high nucleotide sequence identity (85 % and

88 %) to strain RVA/Human-wt/BEL/BE2001/2009/

G9P[6] and strain RVA/Human-wt/RUS/Nov11-N1485/

2011/G4P[6] from Belgium and Russia, respectively, both

of which were recently described as porcine-like human

strains [58, 59].

A single P[7]-type strain (B42-B) (2 %) was detected

that shared 93 % nucleotide sequence identity with por-

cine/bovine reassortant RVA strains (RVA/Cow-tc/KOR/

KJ9-1/2004/G6P[7] and RVA/Cow-tc/KOR/KJ19-2/2004/

G6P[7]) isolated from cattle in Korea and a porcine-like

RVA strain detected in a panda from China (RVA/Panda-

wt/CHN/CH-1/2009/G1P[7]) [19, 46]. Strain B42-B was

also related (93 % nt identity) to Canadian porcine strains

F8-4 and RVA/Pig-wt/CAN/F7-4/2006/G9P[7/13] [30].

A total of 25/48 (52 %) strains were of the P[13] type.

Five representative strains were selected, and these shared

nucleotide sequence identity ranging from 75 % to 82 %

(mean, 79 %). Strain A4 shared 96 % nucleotide sequence

identity with strain RVA/Pig-wt/CAN/CE-M-06-0010/

2006/G4P[13] [25]. Strains E81-A and OE658 shared 82 %

and 93 % nucleotide sequence identity, respectively, with

Canadian strain F7-4, whereas strain D65 was found to be

genetically closest to porcine strain F6-4, also from Canada

(91 % identity) [30]. Strain H117, which was the most

genetically distant (76 % mean nt identity) to other P[13]-

types from this study, shared 93 % nucleotide sequence

identity with Canadian strain RVA/Pig-wt/CAN/CE-M-06-

0007/2005/G11P[13] [25].

A total of 11 out of 48 (23 %) P[27]-type strains were

detected, of which five were selected as representatives,

and these shared a mean nucleotide sequence identity of

82 % (Fig. 1b). Three strains (I157-A, F93 and A11) were

genetically closest to strain RVA/Pig-wt/THA/CMP034/

2000/G2P[27] detected in a swine from Thailand (84-

87 %) [23]. Two strains (H119-B and C182-A) shared

87 % nucleotide sequence identity with the Canadian

porcine strain CE-M-06-0003 [25].

A total of 6 out of 48 strains (13 %) were classified as

P[34] type. Strains H117-A and G98-A were selected as

representatives, and they shared highest nucleotide

sequence identity (93-96 %) with strain RVA/Pig-wt/CAN/

AB82/2006/G2P[34] from a Canadian swine [30].

Sequence analysis of the VP6 segment

A total of 17 VP6 I types have been defined based on an

85 % nucleotide cutoff value [18, 39]. Thirty-two strains

from this study were successfully I-typed, of which 17

were of the I5 type (53 %) and 15 strains were of the I14

type (47 %) (Fig. 1c). For clarity, three strains were chosen

as representative for the I5-type group of sequences (based

on C95 % nucleotide sequence identity within the same

cluster): D69-A, F432-3 and F431-1. The three strains were

related to Canadian swine strains (F8-4, RVA/Pig-wt/CAN/

CE-M-05-0067/2005/G9P[6], AB82, CE-M-05-0081 and

RVA/Pig-wt/CAN/CE-M-06-0022/2006/G4P[6]) with

nucleotide sequence identities ranging from 93 to 96 %

[25, 30]. Interestingly, strain F431-1 clustered on the same

branch as human strains RVA/Human-tc/THA/Mc345/

1989/G9P[19] and RVA/Human-tc/THA/Mc323/1989/

G9P[19] from Thailand, both of which are believed to be of

porcine origin (95 % nt identity) [15]. Strain A260-4 was

the only representative strain for the newly characterized

I14 type and shared 91 % identity at the nucleotide level

with the canonical strain CE-M-06-0003 [25].

Analysis of environmental samples

Molecular detection revealed the presence of RVAs on 42

out of 80 fomites sampled. Of these, 27 were G and/or P

typable. Interestingly, molecular characterization showed

that on 6 out of 10 farms, different RVA genotypes were

present in environmental samples compared to faecal
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samples. Specifically, a total of 3 out of 24 environmental

samples contained unique G-types, and 12 out of 35

environmental samples contained unique P-types that were

not found in faecal samples from the corresponding farm.

Further, strain OB472, which was detected on the landing

stage of farm B and identified as a G9 type, is the only G9

type that was detected in all samples (fomites and faecal)

from all 10 farms (Fig. 1a). Sequence analysis of this strain

revealed 98 % nucleotide sequence identity to porcine

strain F7-4 from Canada [30]. In many cases, however, the

RVA strains detected in faecal samples and fomites within

the same farm showed high nucleotide sequence identities

(95 %), such as I5 type strain D69-A (feces) and D330-1

(fan blades), as would be expected (Fig. 1c).

Rotaviruses are known for their genetic diversity due to

mechanisms such as point mutations, recombination and

reassortment attributable to their segmented genomes [10].

With the advent of human RVA vaccination, coupled with

large-scale surveillance studies of human and animal

strains, there is now compelling evidence supporting zoo-

notic transmission of complete and reassorted RVA strains.

Reassortment of RVA strains from different species can

cause the emergence of new strains bearing properties

derived from both parental lineages. Such transmissions

from swine to humans are known to have occurred on

frequent occasions [15, 34, 51, 55]. Since swine are con-

sidered a large reservoir for RVAs, the characterisation of

circulating strains in the pig population is of pivotal

importance, notably for public health issues, but also from

an ecological and animal health perspective. Canada is an

important swine-producing country, with over 21 million

hogs slaughtered in 2012 (http://www.canadapork.com).

However, very little is known about porcine RVA genetic

diversity and zoonotic potential in this country. Hence, this

study aimed at investigating the heterogeneity of RVA

strains on ten finishing pig farms.

In this study, all farms harbored RVAs in faecal samples

and fomites, and most had up to four different RVA

genotypes based on G and P sequences. Similar diversity of

RVA strains has been reported previously within single

swine production sites [4, 5, 43]. Phylogenetic analysis

revealed that most RVA strains characterized in the present

study were related to porcine strains previously described

in Canada and globally, and they were therefore considered

typical swine strains (Fig. 1a, b and c). Nonetheless, a

number of the RVA types detected are also considered

epidemiologically relevant to infections of humans and

other animal species. For instance, the G2, G5 and G11

VP7 types detected in swine in this study have also been

detected in other animal species, including humans. In

2005, Martella and colleagues reported for the first time

genetic relatedness between a porcine RVA strain from a

diarrheic piglet and human G2 RVA strains [32]. Another

similar strain was also detected in a symptomatic piglet

from Thailand [23]. Furthermore, unusual G5 strains were

detected in symptomatic children from Latin American and

Asian countries, as well as in a young foal. Following

sequence analysis, genome segments of these strains were

suspected to be of porcine origin [1, 2, 7, 9, 28]. In addi-

tion, reassortment events between porcine and human G11

RVA strains have been identified recently [38, 55]. Swine

VP4 types P[6] and P[7] are also known to be genetically

related to human and bovine RVA strains, respectively [33,

45, 46, 58]. VP4 segments P[6] and P[7] from this study

(B42, H117 and B42-B) shared a high level of sequence

identity with human, bovine and panda strains, suggesting

interspecies transmission events. Although the VP6 types

from this study were mostly related to porcine strains, I5

VP6 strain F431-1 appeared genetically related to human

strains Mc345 and Mc323 from Thailand, which are sus-

pected to be of porcine origin [15]. Overall, these results

reveal the existence of frequent spillover events between

RVAs infecting pigs, humans, and other species and

underpin their complex evolutionary paths.

The predominant VP7, VP4 and VP6 genotypes from

this study were G2, P[13] and I5. These results differ from

a recent review by Papp and colleagues, who reported

G5P[7] to be the most prevalent genotype combination for

porcine RVA strains in America based on a total of 20

reports, of which three were from Canada [45]. These

authors also noticed country-specific temporal changes in

G-type and P-type predominance for Canada, Thailand and

Spain. In Canada specifically, the predominant constella-

tion type was reported to be G4P[6]I5 [25]. Those results

contrast with the ones presented here and suggest either

temporal and/or geographical variations in RVA genotype

patterns, although sampling biases cannot be completely

ruled out. Similarly, it is interesting to note that the I14

type has only been reported from Canadian swine so far.

Previous studies have also detected differences in rotavirus

prevalence as well as geographical and/or temporal chan-

ges in RVA genotypes [3, 8, 41]. These findings highlight

the importance of continuous, thorough and local RVA

strain surveillance to increase our knowledge about the

evolution of RVAs at the population level.

Although all G, P and I genotypes reported here have

been identified previously in swine, little is known about

the P[34] type. Discovered for the first time in swine from

Japan (AB571047), this P-type was subsequently detected

in a single sample from Canada in 2006 [30]. To our

knowledge, these are the only two countries where P[34]

has been identified in swine. The prevalence of this par-

ticular type therefore appears low. This seemingly low

prevalence of the P[34] type is intriguing. One possibility

for the apparent low prevalence of this P type is low vir-

ulence or low transmissibility of P[34] strains. Another
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explanation could be that this genotype is emerging in

swine from a yet to be identified reservoir, although tech-

nical limitations such as primer efficiency cannot be ruled

out. Nevertheless, the P[34] type represented 13 % (n=6) of

the strains characterized on two farms from this study. It is

tempting to speculate that these two farms were probably

epidemiologically related, but this hypothesis could not be

confirmed. The finding of the P[34] type underscores the

importance of large-scale studies in bringing new knowl-

edge about the diversity of RVAs and leaves open ques-

tions about the differences in virulence and environmental

resilience of RVA strains.

Rotaviruses are known for their environmental resil-

ience; they have been shown to maintain infectivity in

feces for up to 9 months at room temperature (18-20 �C)

and have also been detected in dust and dried feces on

premises previously occupied by young pigs [57]. It is thus

plausible that the farm environment contributes to the

diversity of RVA strains found at each site by infecting

incoming pigs. In this study, specific G and P types found

in the farm environment were sometimes different from

those detected in animal fecal samples of the same farm.

These results suggest that ‘‘resident’’ strains might persist

on premises and have the potential to contribute to viral

diversity at farm sites. It would be interesting to investigate

the potential of the environmental contamination to infect

incoming naı̈ve animals and/or to reassort with strains

harbored by those animals, as has been suggested recently

[42, 43]. Since finishing herds often include pigs from

different nursery sites, it would be interesting to investigate

the relative importance of these multiple sources of

infection in terms of RVA diversity found in pigs.

Although extensive, the genetic diversity of the RVAs

reported here is most likely underestimated. For instance,

30/48 (63 %) of RVA-positive samples did not yield

amplicons for all three segments investigated. Of these

samples, 63 % (19/30) lacked VP6 genotype information,

while VP7 and VP4 were missing in 40 % and 37 % of

samples, respectively. Suboptimal PCR primers are the

most likely explanation for such failures. As more RVA

sequences become available, alternative primers can be

designed that could possibly reveal yet unforeseen diver-

sity. Another important limitation of this study is the

sampling design, in which 10 farms situated in the same

geographical region were sampled. This clearly represents

a small fraction of the swine industry of this country and,

again, most likely underestimated the true RVA variability

present in Canadian swine.

RVAs were detected in all seasons investigated in this

study: summer (June-August), fall (September-November)

and winter (December-February). Seasonal RVA shedding

in swine has been poorly documented, although differ-

ences related to age groups has been observed in piglets,

which showed higher rates of RV prevalence during the

summer (June-August), whereas infection of adult pigs

showed peaks during the winter season (December-

March) [11]. In humans, most studies report higher rota-

virus prevalence in children during the winter season [56].

Seasonality in rotavirus prevalence in adults showed dis-

cordance with either a winter or summer peak, or the total

absence of a seasonal trend [6, 44, 56]. A recent review

has suggested that seasonality of rotavirus disease in

humans depends not only on the proprieties of the viral

agent but also on many other factors such as geographic

location or country income [48]. Further studies are

warranted to understand seasonal RVA patterns of infec-

tions in adult pigs.

In summary, the results reported here reveal extensive

genetic diversity of swine RVAs both within and between

premises, some of which are epidemiologically relevant to

humans and to other mammalian species. The results also

suggest either temporal or regional fluctuations in RVA

genotype distribution in addition to the consistent presence

of RVAs in pigs over three consecutive seasons. Continued

surveillance of livestock and human RVAs is warranted to

better understand the ecology of these viruses, especially

from a public health perspective.
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